Efficient HOG human detection

نویسندگان

  • Yanwei Pang
  • Yuan Yuan
  • Xuelong Li
  • Jing Pan
چکیده

While Histograms of Oriented Gradients (HOG) plus Support Vector Machine (SVM) (HOG+SVM) is the most successful human detection algorithm, it is time-consuming. This paper proposes two ways to deal with this problem. One way is to reuse the features in blocks to construct the HOG features for intersecting detection windows. Another way is to utilize sub-cell based interpolation to efficiently compute the HOG features for each block. The combination of the two ways results in significant increase in detecting humans—more than five times better. To evaluate the proposed method, we have established a top-view human database. Experimental results on the top-view database and the well-known INRIA data set have demonstrated the effectiveness and efficiency of the proposed method. & 2010 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Body Detection using Histogram of Oriented Gradients and SVM

Human detection is a challenging task in many fields because it is difficult to detect humans due to their variable appearance and posture. Detecting humans accurately is the first fundamental step for many computer vision applications such as video surveillance, smart vehicles, intersection traffic analysis and so on. This paper consists of efficient human detection in static images using Hist...

متن کامل

Human Detection by Using Centrist Features for Thermal Images

In this paper, we present a new human detection scheme for thermal images by using CENsus TRansform hISTogram (CENTRIST) features and Support Vector Machines (SVMs). Human detection in a thermal image is a difficult task due to low image resolution, thermal noising, lack of color, and poor texture information. For thermal images, contour is one of the most useful and discriminative information,...

متن کامل

Efficient Pedestrian Detection at Nighttime Using a Thermal Camera

Most of the commercial nighttime pedestrian detection (PD) methods reported previously utilized the histogram of oriented gradient (HOG) or the local binary pattern (LBP) as the feature and the support vector machine (SVM) as the classifier using thermal camera images. In this paper, we propose a new feature called the thermal-position-intensity-histogram of oriented gradient (TPIHOG or T π HOG...

متن کامل

Research on Gradient Local Binary Patterns Method for Human Detection

I-Abstract Human detection is a key problem in computer vision, which is widely used in image analysis, intelligent vehicle and visual surveillance. However, the task of human detection is rather challenging because of high variations of clothing, pose, occlusion, scale and illumination. In human detection systems, feature extraction and learning method are two important parts and hot research ...

متن کامل

Related HOG Features for Human Detection Using Cascaded Adaboost and SVM Classifiers

Robust and fast human detection in static image is very important for real applications. Although different feature descriptors have been proposed for human detection, for HOG descriptor, how to select and combine more distinguish block-based HOGs, and how to simultaneously make use of the correlation and the local information of these selected HOGs still lack enough research and analysis. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 91  شماره 

صفحات  -

تاریخ انتشار 2011